Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38551853

RESUMO

Small RNAs (sRNAs) are involved in gene silencing in multiple ways including through cross-kingdom transfers from parasites to their hosts. Little is known about the evolutionary mechanisms enabling eukaryotic microbes to evolve functional mimics of host small regulatory RNAs. Here, we describe the identification and functional characterization of SINE_sRNA1, a sRNA family derived from highly abundant SINE retrotransposons in the genome of the wheat powdery mildew pathogen. SINE_sRNA1 is encoded by a sequence motif that is conserved in multiple SINE families and corresponds to a functional plant miRNA mimic targeting Tae_AP1, a wheat gene encoding an aspartic protease only found in monocots. Tae_AP1 has a novel function enhancing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) thus contributing to the cross activation of plant defenses. We conclude that SINE_sRNA1 and Tae_AP1 are functional innovations suggesting the contribution of transposons to the evolutionary arms race between a parasite and its host.

2.
BMC Biol ; 21(1): 29, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755285

RESUMO

BACKGROUND: Worldwide wheat production is under constant threat by fast-evolving fungal pathogens. In the last decades, wheat breeding for disease resistance heavily relied on the introgression of chromosomal segments from related species as genetic sources of new resistance. The Pm8 resistance gene against the powdery mildew disease has been introgressed from rye into wheat as part of a large 1BL.1RS chromosomal translocation encompassing multiple disease resistance genes and yield components. Due to its high agronomic value, this translocation has seen continuous global use since the 1960s on large growth areas, even after Pm8 resistance was overcome by the powdery mildew pathogen. The long-term use of Pm8 at a global scale provided the unique opportunity to study the consequences of such extensive resistance gene application on pathogen evolution. RESULTS: Using genome-wide association studies in a population of wheat mildew isolates, we identified the avirulence effector AvrPm8 specifically recognized by Pm8. Haplovariant mining in a global mildew population covering all major wheat growing areas of the world revealed 17 virulent haplotypes of the AvrPm8 gene that grouped into two functional categories. The first one comprised amino acid polymorphisms at a single position along the AvrPm8 protein, which we confirmed to be crucial for the recognition by Pm8. The second category consisted of numerous destructive mutations to the AvrPm8 open reading frame such as disruptions of the start codon, gene truncations, gene deletions, and interference with mRNA splicing. With the exception of a single, likely ancient, gain-of-virulence mutation found in mildew isolates around the world, all AvrPm8 virulence haplotypes were found in geographically restricted regions, indicating that they occurred recently as a consequence of the frequent Pm8 use. CONCLUSIONS: In this study, we show that the broad and prolonged use of the Pm8 gene in wheat production worldwide resulted in a multitude of gain-of-virulence mechanisms affecting the AvrPm8 gene in the wheat powdery mildew pathogen. Based on our findings, we conclude that both standing genetic variation as well as locally occurring new mutations contributed to the global breakdown of the Pm8 resistance gene introgression.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Ascomicetos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Proc Natl Acad Sci U S A ; 119(30): e2108808119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35857869

RESUMO

Introgressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable-a phenomenon that remains poorly understood, as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the Pm17 resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew (Blumeria graminis). Here, we used quantitative trait locus (QTL) mapping to identify the corresponding wheat mildew avirulence effector AvrPm17. It is encoded by two paralogous genes that exhibit signatures of reoccurring gene conversion events and are members of a mildew sublineage specific effector cluster. Extensive haplovariant mining in wheat mildew and related sublineages identified several ancient virulent AvrPm17 variants that were present as standing genetic variation in wheat powdery mildew prior to the Pm17 introgression, thereby paving the way for the rapid breakdown of the Pm17 resistance. QTL mapping in mildew identified a second genetic component likely corresponding to an additional resistance gene present on the 1AL.1RS translocation carrying Pm17. This gene remained previously undetected due to suppressed recombination within the introgressed rye chromosomal segment. We conclude that the initial effectiveness of 1AL.1RS was based on simultaneous introgression of two genetically linked resistance genes. Our results demonstrate the relevance of pathogen-based genetic approaches to disentangling complex resistance loci in wheat. We propose that identification and monitoring of avirulence gene diversity in pathogen populations become an integral part of introgression breeding to ensure effective and durable resistance in wheat.


Assuntos
Resistência à Doença , Introgressão Genética , Doenças das Plantas , Secale , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Secale/genética , Secale/microbiologia , Triticum/genética , Triticum/microbiologia
4.
Nat Commun ; 13(1): 4315, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882860

RESUMO

The fungus Blumeria graminis f. sp. tritici causes wheat powdery mildew disease. Here, we study its spread and evolution by analyzing a global sample of 172 mildew genomes. Our analyses show that B.g. tritici emerged in the Fertile Crescent during wheat domestication. After it spread throughout Eurasia, colonization brought it to America, where it hybridized with unknown grass mildew species. Recent trade brought USA strains to Japan, and European strains to China. In both places, they hybridized with local ancestral strains. Thus, although mildew spreads by wind regionally, our results indicate that humans drove its global spread throughout history and that mildew rapidly evolved through hybridization.


Assuntos
Doenças das Plantas , Triticum , Genômica , Migração Humana , Humanos , Doenças das Plantas/microbiologia , Poaceae , Triticum/genética , Triticum/microbiologia
5.
Mol Plant Microbe Interact ; 34(12): 1350-1357, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34503345

RESUMO

The emergence of new fungal pathogens through hybridization represents a serious challenge for agriculture. Hybridization between the wheat mildew (Blumeria graminis f. sp. tritici) and rye mildew (B. graminis f. sp. secalis) pathogens has led to the emergence of a new mildew form (B. graminis f. sp. triticale) growing on triticale, a man-made amphiploid crop derived from crossing rye and wheat, which was originally resistant to the powdery mildew disease. The identification of the genetic basis of host adaptation in triticale mildew has been hampered by the lack of a reference genome. Here, we report the 141.4-Mb reference assembly of triticale mildew isolate THUN-12 derived from long-read sequencing and genetic map-based scaffolding. All 11 triticale mildew chromosomes were assembled from telomere-to-telomere and revealed that 19.7% of the hybrid genome was inherited from the rye mildew parental lineage. We identified lineage-specific regions in the hybrid, inherited from the rye or wheat mildew parental lineages, that harbor numerous bona fide candidate effectors. We propose that the combination of lineage-specific effectors in the hybrid genome is crucial for host adaptation, allowing the fungus to simultaneously circumvent the immune systems contributed by wheat and rye in the triticale crop. In line with this, we demonstrate the functional transfer of the SvrPm3 effector from wheat to triticale mildew, a virulence effector that specifically suppresses resistance of the wheat Pm3 allelic series. This transfer is the likely underlying cause for the observed poor effectiveness of several Pm3 alleles against triticale mildew and exemplifies the negative implications of pathogen hybridizations on resistance breeding.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Triticale , Resistência à Doença , Adaptação ao Hospedeiro , Hibridização Genética , Doenças das Plantas , Triticum
6.
New Phytol ; 229(5): 2812-2826, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33176001

RESUMO

Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.


Assuntos
Ascomicetos , Triticum , Ascomicetos/genética , Cromossomos , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética
7.
Plant J ; 104(1): 200-214, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645755

RESUMO

The development of improved plant nucleotide-binding, leucine-rich repeat (LRR) immune receptors (NLRs) has mostly been based on random mutagenesis or on structural information available for specific receptors complexed with the recognized pathogen effector. Here, we use a targeted mutagenesis approach based on the natural diversity of the Pm3 powdery mildew resistance alleles present in different wheat (Triticum aestivum) genotypes. In order to understand the functional importance of the amino acid polymorphisms between the active immune receptor PM3A and the inactive ancestral variant PM3CS, we exchanged polymorphic regions and residues in the LRR domain of PM3A with the corresponding segments of PM3CS. These novel variants were functionally tested for recognition of the corresponding AVRPM3A2/F2 avirulence protein in Nicotiana benthamiana. We identified polymorphic residues in four regions of PM3A that enhance the immune response, but also residues that reduce it or result in complete loss of function. We found that the identified critical residues in PM3A modify its activation threshold towards different protein variants of AVRPM3A2/F2 . PM3A variants with a lowered threshold gave a stronger overall response and gained an extended recognition spectrum. One of these variant proteins with a single amino acid change was stably transformed into wheat, where it conferred race-specific resistance to mildew. This is a proof of concept that improved PM3A variants with an enlarged recognition spectrum can be engineered based on natural diversity by exchanging single or multiple residues that modulate resistance function.


Assuntos
Proteínas NLR/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Triticum/imunologia , Proteínas NLR/fisiologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética
8.
Elife ; 82019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30777147

RESUMO

Nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins in plants and animals mediate intracellular pathogen sensing. Plant NLRs typically detect strain-specific pathogen effectors and trigger immune responses often linked to localized host cell death. The barley Mla disease resistance locus has undergone extensive functional diversification in the host population and encodes numerous allelic NLRs each detecting a matching isolate-specific avirulence effector (AVRA) of the fungal pathogen Blumeria graminis f. sp. hordei (Bgh). We report here the isolation of Bgh AVRa7, AVRa9, AVRa10, and AVRa22, which encode small secreted proteins recognized by allelic MLA7, MLA9, MLA10, and MLA22 receptors, respectively. These effectors are sequence-unrelated, except for allelic AVRa10 and AVRa22 that are co-maintained in pathogen populations in the form of a balanced polymorphism. Contrary to numerous examples of indirect recognition of bacterial effectors by plant NLRs, co-expression experiments with matching Mla-AVRa pairs indicate direct detection of the sequence-unrelated fungal effectors by MLA receptors.


Assuntos
Alelos , Ascomicetos/metabolismo , Receptores Imunológicos/metabolismo , Ascomicetos/genética , Genes de Plantas , Variação Genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Receptores Imunológicos/genética
9.
New Phytol ; 221(4): 2176-2189, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30388298

RESUMO

Blumeria graminis f. sp. tritici (B.g. tritici) is the causal agent of the wheat powdery mildew disease. The highly fragmented B.g. tritici genome available so far has prevented a systematic analysis of effector genes that are known to be involved in host adaptation. To study the diversity and evolution of effector genes we produced a chromosome-scale assembly of the B.g. tritici genome. The genome assembly and annotation was achieved by combining long-read sequencing with high-density genetic mapping, bacterial artificial chromosome fingerprinting and transcriptomics. We found that the 166.6 Mb B.g. tritici genome encodes 844 candidate effector genes, over 40% more than previously reported. Candidate effector genes have characteristic local genomic organization such as gene clustering and enrichment for recombination-active regions and certain transposable element families. A large group of 412 candidate effector genes shows high plasticity in terms of copy number variation in a global set of 36 isolates and of transcription levels. Our data suggest that copy number variation and transcriptional flexibility are the main drivers for adaptation in B.g. tritici. The high repeat content may play a role in providing a genomic environment that allows rapid evolution of effector genes with selection as the driving force.


Assuntos
Ascomicetos/genética , Cromossomos Fúngicos/genética , Genoma Fúngico , Triticum/microbiologia , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Família Multigênica , Polimorfismo Genético , Recombinação Genética/genética , Transcrição Gênica
10.
Front Plant Sci ; 9: 49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441081

RESUMO

Powdery mildew is an important disease of cereals. It is caused by one species, Blumeria graminis, which is divided into formae speciales each of which is highly specialized to one host. Recently, a new form capable of growing on triticale (B.g. triticale) has emerged through hybridization between wheat and rye mildews (B.g. tritici and B.g. secalis, respectively). In this work, we used RNA sequencing to study the molecular basis of host adaptation in B.g. triticale. We analyzed gene expression in three B.g. tritici isolates, two B.g. secalis isolates and two B.g. triticale isolates and identified a core set of putative effector genes that are highly expressed in all formae speciales. We also found that the genes differentially expressed between isolates of the same form as well as between different formae speciales were enriched in putative effectors. Their coding genes belong to several families including some which contain known members of mildew avirulence (Avr) and suppressor (Svr) genes. Based on these findings we propose that effectors play an important role in host adaptation that is mechanistically based on Avr-Resistance gene-Svr interactions. We also found that gene expression in the B.g. triticale hybrid is mostly conserved with the parent-of-origin, but some genes inherited from B.g. tritici showed a B.g. secalis-like expression. Finally, we identified 11 unambiguous cases of putative effector genes with hybrid-specific, non-parent of origin gene expression, and we propose that they are possible determinants of host specialization in triticale mildew. These data suggest that altered expression of multiple effector genes, in particular Avr and Svr related factors, might play a role in mildew host adaptation based on hybridization.

11.
Mol Plant Microbe Interact ; 30(7): 531-542, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28510502

RESUMO

Steroidal glycoalkaloids (SGAs) are plant secondary metabolites known to be toxic to animals and humans and that have putative roles in defense against pests. The proposed mechanisms of SGA toxicity are sterol-mediated disruption of membranes and inhibition of cholinesterase activity in neurons. It has been suggested that phytopathogenic microorganisms can overcome SGA toxicity by enzymatic deglycosylation of SGAs. Here, we have explored SGA-mediated toxicity toward the invasive oomycete Phytophthora infestans, the causative agent of the late blight disease in potato and tomato, as well as the potential for SGA deglycosylation by this species. Our growth studies indicate that solanidine, the nonglycosylated precursor of the potato SGAs α-chaconine and α-solanine, has a greater physiological impact than its glycosylated forms. All of these compounds were incorporated into the mycelium, but only solanidine could strongly inhibit the growth of P. infestans in liquid culture. Genes encoding several glycoside hydrolases with potential activity on SGAs were identified in the genome of P. infestans and were shown to be expressed. However, we found no indication that deglycosylation of SGAs takes place. We present additional evidence for apparent host-specific adaptation to potato SGAs and assess all results in terms of future pathogen management strategies.


Assuntos
Micélio/efeitos dos fármacos , Phytophthora infestans/efeitos dos fármacos , Alcaloides de Solanáceas/farmacologia , Esteroides/farmacologia , Sequência de Carboidratos , Diosgenina/química , Diosgenina/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Estrutura Molecular , Micélio/genética , Micélio/fisiologia , Phytophthora infestans/genética , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Alcaloides de Solanáceas/química , Solanina/análogos & derivados , Solanina/química , Solanina/farmacologia , Solanum tuberosum/microbiologia , Esteroides/química
12.
Front Plant Sci ; 7: 241, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973683

RESUMO

The gene-for-gene hypothesis states that for each gene controlling resistance in the host, there is a corresponding, specific gene controlling avirulence in the pathogen. Allelic series of the cereal mildew resistance genes Pm3 and Mla provide an excellent system for genetic and molecular analysis of resistance specificity. Despite this opportunity for molecular research, avirulence genes in mildews remain underexplored. Earlier work in barley powdery mildew (B.g. hordei) has shown that the reaction to some Mla resistance alleles is controlled by multiple genes. Similarly, several genes are involved in the specific interaction of wheat mildew (B.g. tritici) with the Pm3 allelic series. We found that two mildew genes control avirulence on Pm3f: one gene is involved in recognition by the resistance protein as demonstrated by functional studies in wheat and the heterologous host Nicotiana benthamiana. A second gene is a suppressor, and resistance is only observed in mildew genotypes combining the inactive suppressor and the recognized Avr. We propose that such suppressor/avirulence gene combinations provide the basis of specificity in mildews. Depending on the particular gene combinations in a mildew race, different genes will be genetically identified as the "avirulence" gene. Additionally, the observation of two LINE retrotransposon-encoded avirulence genes in B.g. hordei further suggests that the control of avirulence in mildew is more complex than a canonical gene-for-gene interaction. To fully understand the mildew-cereal interactions, more knowledge on avirulence determinants is needed and we propose ways how this can be achieved based on recent advances in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...